

Hydrodynamiczne łożyska wzdłużne hydrozespołów o pionowych wałach

Michał Wasilczuk ze współpracownikami Politechnika Gdańska, Wydział Mechaniczny

Wprowadzenie – łożyska poprzeczne i wzdłużne

GDAŃSKA

W łożysku poprzecznym wystarczającym warunkiem powstawania smarowania hydrodynamicznego było smarowane łożysko złożone z czopa zabudowanego z niewielkim luzem w cylindrycznej panwi.

Zdroworozsądkowe konstruowanie łożysk wzdłużnych w postaci współpracujących ze sobą płaskich równoległych powierzchni nie dawało dobrych rezultatów i łożyska musiały posiadać nawet kilkanaście powierzchni tarcia

Publikacje Reynoldsa były podstawą wynalezienia łożysk z wahliwymi klockami przez Kingsbury'ego i Michella

Historia – łożyska wzdłużne z wahliwymi klockami

Albert Kingsbury (USA) patent 1910 badania dośw. od r 1898

Elektrowania wodna Holtwood – 1912 220 ton łożysko 1.2 m średnicy (p=2.6 Mpa), w 1950 roku zostało zachowane do dalszej pracy - nie wymieniono żadnej części

10385 Drummond Road Philadelphia, PA 19154 USA Telephone: 1-215-824-4000 Fax: 1-215-824-4999 www.kingsbury.com

Historia –

łożyska wzdłużne z wahliwymi klockami

A.G.M. Michell (Australia)

• 1905 – patent

1907 - łożysko zainstalowane w pompie wodnej w Cohuna 200 obr/min 1.5 MPa •1913 i 1914 pierwsze aplikacje okrętowe •1920 powstaje firma Michell Bearings (w Newcsastle, UK)

Michell Bearings

MICHELL VERTICAL THRUST BEARING FOR A CENTRIFUGAL PUMP. INSTALLED AT COHUNA ON THE MURRAY RIVER, VICTORIA, 1907

Łożyska wzdłużne z wahliwymi klockami podparcia klocków

kierunek ślizgania

krawędź wlotowa

hydrodynamiczny

film smarowy

 krawędź wylotowa segment

rowek smarowy

General Electric Co.

podatna

podpora:

tarcza oporowa

podatna płyta

Łożysko wzdłużne turbiny wodnej

Duże hydrodynamiczne łożyska wzdłużne - kilka faktów

 •grubość warstwy oleju oddzielająca ruchomą tarczę od nieruchomej powierzchni klocka 20-50 μm (mniej niż grubość włosa)

- prędkość względna nawet 30-40 m/s (ponad 100 km/h)
- •ilość ciepła generowanego w filmie smarowym łożyska zbliżona niekiedy do
- 1MW (gęstość strumienia ciepła do około 400 kW/m²)
- •obciążenia osiowe do kilkuset ton średnie naciski do 5-6 MPa
- średnice nawet ponad 5 metrów (Trzy Przełomy Chiny) w Polsce EW
 Włocławek 3.4 m
- •skutki awarii wielotygodniowe przestoje hydrozespołów o mocy kilkuset MW

Hydrodynamiczne łożyska wzdłużne zjawiska fizyczne

Dodatkowo przestrzeń między segmentami:

mieszanie środka smarowego dostarczanego z układu smarowania ze smarem wypływającym z poprzedniego segmentu

Poglądowy obraz zjawisk

Problemy w łożyskach wzdłużnych

 nadmierne odkształcenia segmentów – nieprawidłowy kształt szczeliny Zmiany konstrukcji klocków i sposobu podparcia smarowej, nierównomierny rozkład obciążenia Zmiany konstrukcji sposobu przeciążenie niektórych segmentów podparcia dokładniejsza regulacja niewystarczająca odporność stopu łożyskowego na podwyższoną temperaturę - zy Obniżanie temperatury, zmiany materiałów eniowe, łożyskowych (m. in. PTFE) płynięcie stopu niewystarczająca obciążalność podczas rozruchu i wybiegu maszyny awarie pod Wprowadzanie hydrostatycznego smarowania, ale także zmiany materiałów łożyskowych np PTFE •błędy konstrukcyjne - trudny montaż i regulacja, częste uszkodzenia Udoskonalanie konstrukcji elementów i podzespołów elementó

Według szacunków ubezpieczycieli awarie łożysk w maszynach wodnych powodują około 40% strat podczas eksploatacji

20 lat współpracy z energetyką wodną - ocena przyczyn i usuwanie skutków SZEŚCIU awarii łożysk wzdłużnych w dużych elektrowniach wodnych w Polsce

Nie tylko w Polsce - w podobnym czasie z literatury i osobistych kontaktów znane są nam informacje o około 10 awariach w dużych elektrowniach wodnych na świecie – kilka razy byliśmy proszeni o pomoc

Dygresja – konsekwencje awarii

Przykład awarii - usunięcie skutków i przyczyn awarii - skala uszkodzeń segmentów była niewielka (fot.) opóźnia oddanie maszyny do użytku po r<u>emoncie o co najmniej 4 mies</u>iące.

Skutki finansowe:

przy mocy 50 MW generowane jest 1200 MWh energii elektrycznej na dobę o hurtowej cenie ok. 200 zł/MWh, zatem DOBOWY PRZYCHÓD WYNOSI 240 000 ZŁ, a miesięczny 7.5 mln zł, nie uwzględniając kosztów przywrócenia poprzedniego stanu technicznego. 12

Odkształcenia termiczne

Odkształcenia są proporcjonalne do: -szerokości klocka, -grubości klocka, -różnicy temperatur -współczynnika rozszerzalności cieplnej

$$\delta_{\mathbf{t}} = \frac{\mathbf{B}^2 \cdot \lambda \cdot (\mathbf{t}_{\max} - \mathbf{t}_{\min})}{8 \cdot \mathbf{H}}$$

Ciepło generowane w filmie ogrzewa klocek i powoduje że wierzch jest cieplejszy niż spód. Segment się deformuje.

> Deformacje wpływają na kształt szczeliny smarowej i właściwości łożyska

Odkształcenia termiczne c.d.

Proste powiększanie rozmiarów klocka łożyskowego "nic nie daje"

Odkształcenia termiczne c.d.

Wniosek

To nie działa – dlaczego?

ot. 2. Widok warstwy ślizgowej łożyska z polimerową warstwą ślizgową: a) z warstwą pośrednią z drutu brązowego lub miedzianego, z warstwą pośrednią ze spiekanego brązu.

ograniczanie przepływu ciepła przez klocek

Ograniczanie odkształceń termicznych

δl_i

Przyczyny nierównomiernego rozdziału obciążenia

Niedokładność wykonania Niedokładność montażu

Niedokładność montażu Odkształcenia korpusu/fundamentu

Znane z techniki sposoby zmniejszania nierównomierności obciążeń

Sprężyste podparcia: •wieloprzęsłowe sprężyny pierścieniowe •sprężyny płytowe •sprężyny talerzowe, •pakiety napiętych wstępnie sprężyn talerzowych

Podkładki z odkształcalnych plastycznie materiałów

Znane z techniki sposoby zmniejszania nierównomierności obciążeń

Podpory hydrauliczne skuteczne ale bardzo złożone

Konstrukcja łożyska wzdłużnego EW Dychów

Ocena zróżnicowania obciążenia klocków

Wyniki obliczeń termo-elasto-hydrodynamicznych

temperatura klocka w warstwie czujnika

W czasie zwykłej eksploatacji temperatury klocków na obwodzie łożyska są zróżnicowane w zakresie:

$$t^*_{min}$$
 = 44°C ÷ t^*_{max} = 62°C

*w miejscu pomiaru

t*_{max} osiągnięto w obliczeniach przy obciążeniu segmentu:

 $F_{max}=2 \times F_{sr}$

t*_{min} osiągnięto w obliczeniach przy obciążeniu segmentu:

F_{min}=0.5×F_{śr}

Proporcje obciążenia poszczególnych klocków: F_{max}/ F_{min} = 4:1 W najbardziej obciążonych segmentach grubość filmu na granicy wartości dopuszczalnych: ok. 30 μm

Analiza podatności podparcia klocków

odkształcenie ok. 0.2 mm, naprężenia do ok. 200 MPa, trudno wyraźnie zwiększyć podatność podpory obecnej konstrukcji ponieważ naprężenia są zbyt duże

Modernizacja konstrukcji łożyska

Wymagane radykalne uelastycznienie podparcia klocków

Nowa konstrukcja łożyska - wprowadzono dodatkową sprężystą płytę

Modernizacja konstrukcji łożyska

Modernizacja konstrukcji łożyska

Dobrano:

r=200 mm, h=52 mm

(σ=380 MPa, f=0.6 mm)

Pierwsze doświadczenia eksploatacyjne:

Zróżnicowanie temperatury poszczególnych klocków zmniejszyło się do 2÷3 °C

Modernizacja łożyska nośnego EW Dychów układ hydrostatycznego smarowania - weryfikacja parametrów

Modernizacja łożyska nośnego EW Dychów

układ hydrostatycznego smarowania - "otwarcie" komory

Wpływ deformacji sprężystych na zwiększenie czynnej powierzchni komory

Modernizacja łożyska nośnego EW Dychów

układ hydrostatycznego smarowania - konstrukcja klocka

Program badań eksploatacyjnych specjalne segmenty pomiarowe

Pomiary temperatur i grubości filmu we wszystkich stanach pracy przed i po modernizacji układu chłodzenia w różnych warunkach zewnętrznych w dwóch różnych maszynach –

3 osobne kilkudniowe sesje pomiarowe

Wpływ czasu pracy pompy hydrostatycznego smarowania na warunki pracy łożyska

- porównywano <u>temperatury i grubości filmu</u> w momencie największego obciążenia łożyska w różnych stanach nieustalonych (rozruch do pracy pompowej i turbinowej, oraz odstawienie po pracy pompowej i turbinowej)
- przy różnym czasie pracy pompy (do75% nn, do 85% nn, do 100% nn i 30 s po nn)

Wpływ czasu pracy pompy hydrostatycznego smarowania na warunki pracy łożyska

Bardzo zachęcające wyniki, brak jakichkolwiek negatywnych aspektów przedłużania pracy układu hydrostatycznego (poza trwałością mało kosztownego układu) \Rightarrow decyzja o zmianach w procedurze rozruchu i wybiegu

W związku z literaturowymi doniesieniami o stosowaniu hydrostatycznego wspomagania w pracy ciągłej decyzja o przeprowadzeniu badań w EW Porąbka Żar

Ustalona praca pompowa

z wykorzystaniem hydrostatycznego wspomagania

Efekty stosowania smarowania hydrostatycznego w pracy ciągłej - zbiorcze wyniki

"Najwyższa" temperatura powierzchni ślizgowej w różnych stanach pracy

Najwyższa temperatura powierzchni ślizgowej obniżona o prawie 20°C

Ograniczenia materiałowe – stop łożyskowy ("kompozycja") a tworzywo sztuczne

Stosowanie polimerów w łożyskach wzdłużnych

ot. 2. Widok warstwy ślizgowej łożyska z polimerową warstwą ślizgową: a) z warstwą pośrednią z drutu brązowego lub miedzianego, z warstwą pośrednią ze spiekanego brązu.

